Sapere Scienza

Sapere Scienza
Fino a oggi, gli strumenti di radioprotezione per misurare le radiazioni gamma (fotoni) o beta (elettroni e positroni) perdevano le loro funzionalità in presenza di campo magnetico. La soluzione, ovvero uno strumento capace di misurare la quantità (dose) di radiazioni anche in presenza di campi magnetici, è stata trovata da…

Finalmente il momento è arrivato: dopo sei anni dalla sua scoperta, è stato possibile osservare il bosone di Higgs decadere in particelle fondamentali chiamate quark bassi (in inglese bottom quark). I risultati sono stati presentati ieri, presso il CERN di Ginevra, dai gruppi di ricerca degli esperimenti ATLAS (A Toroidal LHC ApparatuS) e CMS (Compact Muon Solenoid) del Large Hadron Collider. I dati sembrano confermare l'ipotesi secondo la quale il campo quantistico dietro al bosone di Higgs conferisca massa al bottom quark.

Dopo il riavvio con successo del Large Hadron Collider e i primi mesi di presa dati con collisioni protone-protone, l'acceleratore del CERN di Ginevra si sta muovendo verso una nuova fase: le prime collisioni di ioni di piombo della stagione 2, che raggiungeranno un'energia circa due volte superiore a quella di qualsiasi esperimento precedente.

Dopo una pausa di due anni, a marzo riprenderà a funzionare il Large Hadron Collider (LHC) del CERN che, secondo quanto annunciato durante un incontro al meeting annuale dell'American Association for the Advancement of Science, potrebbe svelare misteri legati all'antimateria e alla materia oscura entro la fine dell'anno.

L'LHC del CERN di Ginevra, il più grande acceleratore di particelle al mondo, continuerà sicuramente a funzionare con prestazioni sempre maggiori, almeno per i prossimi vent’anni. Visti i tempi necessari per realizzare queste gigantesche imprese, la comunità scientifica, e il CERN in particolare, stanno però già iniziando a pensare al …

Sono passati 7 anni da quando il bosone di Higgs è stato rilevato all'interno dell'acceleratore di particelle LHC, il Large Hadron Collider. Ora si sta cercando di costruire un successore di LHC, più grande - un tunnel circolare di 100 chilometri, contro i 27 del suo predecessore - per avere uno strumento in grado di raggiungere una precisione maggiore ed effettuare nuove misure per continuare l'avventura verso una nuova fisica. Un articolo di recente pubblicato su Quanta magazine discute dei misteri non ancora svelati legati al bosone di Higgs e dell'utilità di un nuovo acceleratore.

Le gigantesche macchine acceleratrici come l’Lhc del Cern possono funzionare solo grazie alla superconduttività, un fenomeno scoperto nel 1911 dal Premio Nobel olandese Heike Kamerlingh Onnes. Osservando il mercurio portato ad operare a bassa temperatura, Onnes misurò che la resistenza elettrica diventava nulla e la corrente fluiva senza ostacoli né…
Pagina 1 di 2

Questo sito utilizza cookie, anche di terze parti, per migliorare la tua esperienza di navigazione. Se vuoi saperne di più consulta l'informativa estesa. Cliccando su ok acconsenti all'uso dei cookie.